Zürcher Nachrichten - Warming Baltic Sea: a red flag for global oceans

EUR -
AED 3.850375
AFN 71.007285
ALL 98.201564
AMD 408.172647
ANG 1.878386
AOA 957.098007
ARS 1045.872072
AUD 1.604869
AWG 1.889562
AZN 1.779904
BAM 1.956809
BBD 2.104325
BDT 124.544208
BGN 1.968551
BHD 0.392806
BIF 3078.616524
BMD 1.0483
BND 1.404738
BOB 7.24187
BRL 6.086226
BSD 1.042247
BTN 88.460581
BWP 14.238612
BYN 3.410823
BYR 20546.688681
BZD 2.100823
CAD 1.461105
CDF 3009.671132
CHF 0.9326
CLF 0.036947
CLP 1019.484612
CNY 7.593157
CNH 7.597548
COP 4601.776869
CRC 530.878754
CUC 1.0483
CUP 27.779962
CVE 110.93704
CZK 25.34004
DJF 185.599225
DKK 7.456773
DOP 62.812982
DZD 139.925472
EGP 51.732528
ERN 15.724507
ETB 127.590195
FJD 2.38588
FKP 0.827441
GBP 0.832057
GEL 2.872517
GGP 0.827441
GHS 16.558308
GIP 0.827441
GMD 74.429381
GNF 8983.717181
GTQ 8.090008
GYD 219.258233
HKD 8.156883
HNL 26.33783
HRK 7.477799
HTG 136.811837
HUF 411.259269
IDR 16621.851823
ILS 3.881961
IMP 0.827441
INR 88.449668
IQD 1365.329933
IRR 44107.241094
ISK 146.394871
JEP 0.827441
JMD 166.037183
JOD 0.743352
JPY 161.121705
KES 135.724012
KGS 90.678259
KHR 4196.203348
KMF 495.323945
KPW 943.470001
KRW 1464.376148
KWD 0.322719
KYD 0.868564
KZT 520.398216
LAK 22893.239195
LBP 93331.897146
LKR 303.342173
LRD 189.165938
LSL 18.807555
LTL 3.095359
LVL 0.634107
LYD 5.089721
MAD 10.543169
MDL 19.010163
MGA 4864.600715
MKD 61.561738
MMK 3404.838947
MNT 3562.124849
MOP 8.356367
MRU 41.469775
MUR 49.11333
MVR 16.206707
MWK 1807.266202
MXN 21.344967
MYR 4.673848
MZN 66.997415
NAD 18.807555
NGN 1770.013361
NIO 38.350137
NOK 11.544016
NPR 140.753907
NZD 1.78839
OMR 0.401204
PAB 1.048049
PEN 3.952037
PGK 4.196203
PHP 61.740705
PKR 289.425072
PLN 4.332472
PYG 8136.349859
QAR 3.822154
RON 4.973557
RSD 117.765012
RUB 108.677289
RWF 1422.747058
SAR 3.935736
SBD 8.788484
SCR 14.275496
SDG 630.551352
SEK 11.497865
SGD 1.40737
SHP 0.827441
SLE 23.828224
SLL 21982.341102
SOS 595.612745
SRD 37.208405
STD 21697.702658
SVC 9.119876
SYP 2633.886163
SZL 18.801051
THB 36.153258
TJS 11.161414
TMT 3.669052
TND 3.32957
TOP 2.455227
TRY 36.242708
TTD 7.078649
TWD 34.034134
TZS 2787.788371
UAH 43.118052
UGX 3872.45876
USD 1.0483
UYU 44.569998
UZS 13370.893257
VES 48.807995
VND 26632.072752
VUV 124.456335
WST 2.926426
XAF 656.301612
XAG 0.033867
XAU 0.000389
XCD 2.833084
XDR 0.792824
XOF 656.301612
XPF 119.331742
YER 261.996486
ZAR 18.896155
ZMK 9435.963602
ZMW 28.791392
ZWL 337.552315
  • SCS

    0.2300

    13.27

    +1.73%

  • CMSC

    0.0320

    24.672

    +0.13%

  • RIO

    -0.2200

    62.35

    -0.35%

  • BCC

    3.4200

    143.78

    +2.38%

  • BCE

    0.0900

    26.77

    +0.34%

  • JRI

    -0.0200

    13.21

    -0.15%

  • CMSD

    0.0150

    24.46

    +0.06%

  • NGG

    1.0296

    63.11

    +1.63%

  • GSK

    0.2600

    33.96

    +0.77%

  • RELX

    0.9900

    46.75

    +2.12%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • AZN

    1.3700

    65.63

    +2.09%

  • VOD

    0.1323

    8.73

    +1.52%

  • BTI

    0.4000

    37.38

    +1.07%

  • RBGPF

    59.2400

    59.24

    +100%

  • BP

    0.2000

    29.72

    +0.67%

Warming Baltic Sea: a red flag for global oceans
Warming Baltic Sea: a red flag for global oceans / Photo: Alessandro RAMPAZZO - AFP

Warming Baltic Sea: a red flag for global oceans

Climate change combined with pollution from farming and forestry could flip northern Europe's Baltic Sea from being a sponge for CO2 to a source of the planet-warming gas, scientists studying told AFP.

Text size:

This should be a red flag, they warned, noting that other coastal marine zones around the world are trending in the same direction.

"We are at the forefront of these changes," said University of Helsinki professor Alf Norkko.

The Baltic Sea –- connected to the Atlantic by the straights of Denmark, and surrounded by Germany, Poland, Finland, Sweden and the Baltic states –- has warmed at twice the pace of global oceans generally.

Its relatively shallow waters are extremely sensitive to changes in the environment and climate.

AFP recently accompanied Norkko, who leads the largest marine research station in the Baltic Sea, and some of his colleagues on a research excursion to the Finnish waterfront town of Hanko.

Slender terns dart above the lush marsh-like landscape surrounding the over 120-year-old field station, a common sight along Finland's 1,100-kilometre (680-mile) coastline, which is dotted by more than 81,000 islands.

Measurements conducted since 1926 show that average sea temperature have spiked by two degrees Celsius over the last 30 years.

"The Baltic Sea is basically a small bathtub compared to the global oceans," said doctoral researcher Norman Gobeler, an expert on marine heatwaves.

"We are seeing the first effects of the temperature increase."

- Linking marine ecosystems to climate change -

During one foray into the field, coastal ecologist and doctoral researcher Margaret Williamson –- sporting waist-high waders and sunglasses –- moved through a swaying, green reedbed collecting stems, roots and soil to measure CO2 levels.

"The Baltic Sea is really important for understanding what climate change is doing worldwide," said Williamson, who is part of a joint research project with Helsinki and Stockholm universities.

Many coastal areas across the globe -- coral reefs, estuaries, and mangrove forests –- are among the planet's richest biodiversity hotspots, providing vital nurseries and habitats for hundreds of marine species.

They are also the most vulnerable to the kind of changes observed in the Baltic.

Up to now, oceans have been our most important natural ally in coping with global warming.

Over decades, they have consistently absorbed 90 percent of the heat generated by human-induced climate change, and about a quarter of the carbon dioxide humanity injects into the atmosphere.

But scientists say there is a lot we do not know about the capacity of oceans to continue serving as "sinks", or sponges, for our carbon pollution, Norkko noted.

"There has been a lot of emphasis on terrestrial forests' role as carbon sinks," he said. "Our coasts and oceans have been ignored. The question is, how much further the oceans can take of all these stressors?"

- From carbon sink to carbon source? -

Recent findings from the Finnish research station suggest coastal ecosystems in the Baltic Sea could start emitting greenhouse gases –- CO2 and methane –- instead of absorbing them, driven by both rising temperatures and environmental pollution.

The ecological condition of many coastal areas has deteriorated due to the runoff from forestry and nitrogen and phosphorus-rich fertiliser used in agriculture, as well as untreated waste water.

The overabundance of chemical nutrients leads to harmful algae blooms, and vast "dead zones" depleted of oxygen, a process known as eutrophication.

"A degraded ecosystem will be a net carbon source," Norkko said. "Our biggest concern is that what should be an efficient carbon sink could become a carbon source."

Norkko said the changes already witnessed in the Baltic Sea should sound the alarm for coastal regions across the world.

"Many of the world's densely populated coastal areas are affected by eutrophication and this has a huge effect on the ability of coastal ecosystems to mitigate climate change," he said.

While measures to protect and restore healthy marine ecosystems had been taken in the Baltic Sea and elsewhere, ramped up efforts are required to ensure their role as carbon absorbers.

Pointing to the dark green, bubbly bladderwrack -- a threatened seaweed that anchors coastal marine ecosystems –- Norkko compared the algae with an "old growth forest", noting it lives up to 30 years in a robust coastal ecosystem.

"Once the bladderwrack sucks up carbon it stores it for a long time," he said. "That's why a healthy system is a buffer against change and is important to maintain."

H.Roth--NZN