Zürcher Nachrichten - Gas flares vastly underperform, causing greater climate impact: study

EUR -
AED 3.826681
AFN 70.961758
ALL 98.138602
AMD 405.652886
ANG 1.877182
AOA 951.190259
ARS 1045.720247
AUD 1.602814
AWG 1.877897
AZN 1.775245
BAM 1.955573
BBD 2.102956
BDT 124.465544
BGN 1.955294
BHD 0.392554
BIF 3076.642669
BMD 1.041829
BND 1.403837
BOB 7.197164
BRL 6.043693
BSD 1.041579
BTN 87.914489
BWP 14.229347
BYN 3.408604
BYR 20419.848375
BZD 2.099456
CAD 1.456529
CDF 2991.091432
CHF 0.930957
CLF 0.036923
CLP 1018.83097
CNY 7.54601
CNH 7.562783
COP 4573.368835
CRC 530.538382
CUC 1.041829
CUP 27.608468
CVE 110.252195
CZK 25.343745
DJF 185.478458
DKK 7.457729
DOP 62.772709
DZD 139.835759
EGP 51.726992
ERN 15.627435
ETB 127.508391
FJD 2.371151
FKP 0.822333
GBP 0.831435
GEL 2.855018
GGP 0.822333
GHS 16.456089
GIP 0.822333
GMD 73.970229
GNF 8977.957272
GTQ 8.040066
GYD 217.904692
HKD 8.110066
HNL 26.320943
HRK 7.431636
HTG 136.72412
HUF 411.522823
IDR 16610.452733
ILS 3.856892
IMP 0.822333
INR 87.968134
IQD 1364.44153
IRR 43834.955489
ISK 145.523076
JEP 0.822333
JMD 165.930728
JOD 0.738765
JPY 161.244275
KES 134.884334
KGS 90.122166
KHR 4193.512952
KMF 492.268155
KPW 937.645704
KRW 1463.259646
KWD 0.320727
KYD 0.867999
KZT 520.059599
LAK 22878.342838
LBP 93271.167197
LKR 303.144792
LRD 187.998165
LSL 18.795317
LTL 3.076251
LVL 0.630192
LYD 5.086409
MAD 10.478083
MDL 18.997794
MGA 4861.435378
MKD 61.522855
MMK 3383.819949
MNT 3540.134882
MOP 8.35093
MRU 41.443187
MUR 48.810083
MVR 16.10707
MWK 1806.090235
MXN 21.283008
MYR 4.654932
MZN 66.583684
NAD 18.795317
NGN 1767.675143
NIO 38.325549
NOK 11.53576
NPR 140.663663
NZD 1.785942
OMR 0.400943
PAB 1.041579
PEN 3.949541
PGK 4.193513
PHP 61.404399
PKR 289.239507
PLN 4.337676
PYG 8131.055634
QAR 3.798559
RON 4.978071
RSD 116.991412
RUB 108.671879
RWF 1421.834864
SAR 3.911473
SBD 8.734231
SCR 14.272055
SDG 626.663972
SEK 11.497837
SGD 1.402931
SHP 0.822333
SLE 23.68116
SLL 21846.638123
SOS 595.230868
SRD 36.978718
STD 21563.75683
SVC 9.113941
SYP 2617.626467
SZL 18.788818
THB 35.922648
TJS 11.092512
TMT 3.646401
TND 3.309016
TOP 2.440072
TRY 35.9978
TTD 7.074178
TWD 33.946439
TZS 2770.578216
UAH 43.089995
UGX 3848.553017
USD 1.041829
UYU 44.294855
UZS 13362.448044
VES 48.506662
VND 26482.251319
VUV 123.688032
WST 2.90836
XAF 655.880824
XAG 0.033274
XAU 0.000384
XCD 2.815595
XDR 0.792308
XOF 655.880824
XPF 119.331742
YER 260.379151
ZAR 18.915093
ZMK 9377.71492
ZMW 28.772658
ZWL 335.468513
  • GSK

    0.2600

    33.96

    +0.77%

  • AZN

    1.3700

    65.63

    +2.09%

  • RIO

    -0.2200

    62.35

    -0.35%

  • RBGPF

    59.2400

    59.24

    +100%

  • BTI

    0.4000

    37.38

    +1.07%

  • CMSC

    0.0320

    24.672

    +0.13%

  • RELX

    0.9900

    46.75

    +2.12%

  • BP

    0.2000

    29.72

    +0.67%

  • NGG

    1.0296

    63.11

    +1.63%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • SCS

    0.2300

    13.27

    +1.73%

  • BCC

    3.4200

    143.78

    +2.38%

  • BCE

    0.0900

    26.77

    +0.34%

  • VOD

    0.1323

    8.73

    +1.52%

  • CMSD

    0.0150

    24.46

    +0.06%

  • JRI

    -0.0200

    13.21

    -0.15%

Gas flares vastly underperform, causing greater climate impact: study
Gas flares vastly underperform, causing greater climate impact: study / Photo: SPENCER PLATT - GETTY IMAGES NORTH AMERICA/AFP/File

Gas flares vastly underperform, causing greater climate impact: study

Flaring -- burning off unwanted natural gas from oil and gas wells -- releases five times more of the potent greenhouse gas methane into the atmosphere over the United States than previously assumed, according to a study published Thursday.

Text size:

The result is a far greater impact on climate change, with the warming potential between the stated and actual effectiveness of flaring across the United States equivalent to putting 2.9 million more cars onto the road each year, the paper in Science said.

A team led by Genevieve Plant at the University of Michigan carried out airborne sampling over the Permian Basin and Eagle Ford Shale in Texas, as well as the Bakken Formation that straddles North Dakota and Montana. These together account for 80 percent of US flaring.

"We employed a small airplane equipped with highly sensitive sensors to measure the concentrations of methane and carbon dioxide directly downwind of flare stacks," Plant told AFP.

"Over the course of our airborne survey, we sample around 300 distinct flare stacks throughout the highest-flaring regions in the US."

The fossil fuel industry and US government work on the assumption that flares remain lit and destroy methane, the predominant component of natural gas, with 98 percent efficiency.

But according to the study, a combination of unlit flares and some flares that were burning highly inefficiently meant that on average, flares destroyed just 91.1 percent of methane.

That implies methane emissions from flaring in the United States, which ranks among the top five nations for flaring activity, are five times as high as currently officially reported.

- Health impacts -

Digging deeper into the numbers, the team found that most flares actually operate at 98 percent efficiency.

But a modest number of malfunctioning flares operate at efficiency as low as 60 percent, and 3-5 percent of flares are unlit -- directly venting unburned gas into the atmosphere.

Flaring is an inherently wasteful activity -- as the natural gas associated with oil extraction could be used for productive purposes.

The amount of gas that is currently flared each year – about 144 billion cubic meters – could power the whole of sub-Saharan Africa, according to the World Bank.

Gas is flared for various reasons. Sometimes it is done for safety, since the extraction process deals with high pressures that can cause explosions.

At other times it can be economic -- when, for example, the target is oil and the associated gas isn't considered worth bringing to market.

"From anecdotal conversations with industry experts, one potential reason flares may be unlit is due to high wind events and then the flares remain unlit until noticed by the operator if re-igniting systems are either not installed or not working," said Plant.

The team suggested a number of solutions, key among them: reduce the total volume of flaring activity, increasing flare efficiency, and reducing the number of unlit flares.

Technology solutions can also be deployed, such as re-injecting gas back into oil reservoirs, which is common practice in Alaska.

"Other proposed alternatives to flaring include using the gas to power equipment on-site, as well as storing it, either compressed or liquefied form, for later energy use," said Plant.

In a related commentary, authors Riley Duren and Deborah Gordon said the findings had important health implications for the half million people who live within five kilometers (three miles) of the three basins studied.

"Unlit and partially combusted flares have the potential to expose front-line communities to a cocktail of co-pollutants that present risks of acute and/or chronic health impacts," they said.

Methane is a potent greenhouse gas, with more than 80 times the warming power of carbon dioxide over the first 20 years it enters the atmosphere -- though carbon dioxide has greater staying power.

Because of this, more than 120 countries have signed a Global Methane Pledge to cut emissions by 30 percent by 2030.

W.O.Ludwig--NZN