Zürcher Nachrichten - The scientist rewriting DNA, and the future of medicine

EUR -
AED 4.172469
AFN 82.254285
ALL 99.443091
AMD 442.669245
ANG 2.033568
AOA 1042.821867
ARS 1220.13733
AUD 1.80657
AWG 2.044748
AZN 1.935661
BAM 1.955664
BBD 2.288841
BDT 137.74043
BGN 1.961167
BHD 0.42777
BIF 3370.065862
BMD 1.135971
BND 1.496896
BOB 7.833456
BRL 6.659749
BSD 1.133621
BTN 97.596219
BWP 15.810902
BYN 3.709842
BYR 22265.033118
BZD 2.277042
CAD 1.575536
CDF 3265.353315
CHF 0.926352
CLF 0.02877
CLP 1119.192243
CNY 8.283619
CNH 8.27647
COP 4910.258856
CRC 581.659589
CUC 1.135971
CUP 30.103234
CVE 110.25734
CZK 25.124845
DJF 201.665989
DKK 7.469696
DOP 70.015136
DZD 149.546094
EGP 58.259952
ERN 17.039566
ETB 147.302266
FJD 2.589451
FKP 0.870523
GBP 0.868347
GEL 3.135724
GGP 0.870523
GHS 17.570779
GIP 0.870523
GMD 81.226307
GNF 9813.318212
GTQ 8.743393
GYD 237.163523
HKD 8.810422
HNL 29.369959
HRK 7.534333
HTG 148.329695
HUF 409.938323
IDR 19081.076584
ILS 4.222235
IMP 0.870523
INR 97.663012
IQD 1484.996829
IRR 47824.382762
ISK 145.295033
JEP 0.870523
JMD 179.687516
JOD 0.805522
JPY 163.035006
KES 146.799801
KGS 99.341107
KHR 4541.684463
KMF 499.263598
KPW 1022.294878
KRW 1614.4251
KWD 0.348107
KYD 0.944734
KZT 585.8193
LAK 24559.293723
LBP 101571.343247
LKR 338.136508
LRD 226.724248
LSL 21.868981
LTL 3.354228
LVL 0.687138
LYD 6.299562
MAD 10.546067
MDL 20.093604
MGA 5113.644725
MKD 61.530725
MMK 2385.0762
MNT 3994.555643
MOP 9.055971
MRU 44.687895
MUR 49.87338
MVR 17.498202
MWK 1965.663434
MXN 23.067966
MYR 5.023837
MZN 72.60034
NAD 21.868981
NGN 1814.225757
NIO 41.717102
NOK 12.117749
NPR 156.154151
NZD 1.949496
OMR 0.437393
PAB 1.133621
PEN 4.231206
PGK 4.684675
PHP 64.754939
PKR 317.835518
PLN 4.289579
PYG 9069.369898
QAR 4.133413
RON 4.979761
RSD 117.211857
RUB 94.489935
RWF 1633.886484
SAR 4.263339
SBD 9.490317
SCR 16.273869
SDG 682.154808
SEK 11.102759
SGD 1.499032
SHP 0.892695
SLE 25.877842
SLL 23820.746739
SOS 647.85499
SRD 42.083228
STD 23512.307787
SVC 9.919311
SYP 14769.561249
SZL 21.857481
THB 38.057346
TJS 12.316644
TMT 3.975899
TND 3.411763
TOP 2.660562
TRY 43.085154
TTD 7.708464
TWD 36.779567
TZS 3038.088926
UAH 46.92884
UGX 4165.710584
USD 1.135971
UYU 49.176583
UZS 14700.978637
VES 87.603875
VND 29259.775028
VUV 140.62449
WST 3.205325
XAF 655.91143
XAG 0.035181
XAU 0.000351
XCD 3.070019
XDR 0.815743
XOF 655.91143
XPF 119.331742
YER 278.657784
ZAR 21.729241
ZMK 10225.106937
ZMW 31.995777
ZWL 365.782223
  • BCE

    0.3800

    21.36

    +1.78%

  • BCC

    0.9800

    95.66

    +1.02%

  • SCS

    -0.0300

    10.18

    -0.29%

  • CMSD

    -0.3000

    21.9

    -1.37%

  • GSK

    1.0400

    34.64

    +3%

  • NGG

    2.4700

    68.06

    +3.63%

  • AZN

    1.4200

    66.29

    +2.14%

  • RBGPF

    62.0100

    62.01

    +100%

  • CMSC

    -0.3500

    21.8

    -1.61%

  • RIO

    1.9900

    56.86

    +3.5%

  • BTI

    1.0200

    41.57

    +2.45%

  • JRI

    0.1450

    11.91

    +1.22%

  • RELX

    0.1000

    49.12

    +0.2%

  • VOD

    0.2800

    8.73

    +3.21%

  • BP

    0.3600

    26.59

    +1.35%

  • RYCEF

    -0.0100

    9.12

    -0.11%

The scientist rewriting DNA, and the future of medicine
The scientist rewriting DNA, and the future of medicine / Photo: Casey ATKINS - Broad Institute of Harvard and MIT,/AFP

The scientist rewriting DNA, and the future of medicine

A revolution is underway in gene editing -- and at its forefront is David Liu, an American molecular biologist whose pioneering work is rewriting the building blocks of life with unprecedented precision.

Text size:

A professor at the Broad Institute of MIT and Harvard, Liu was awarded a Breakthrough Prize in Life Sciences on Saturday for developing two transformative technologies: one already improving the lives of patients with severe genetic diseases, the other poised to reshape medicine in the years ahead.

He spoke with AFP ahead of the Los Angeles ceremony for the prestigious Silicon Valley-founded award.

He will receive $3 million for his work on "base editing" and "prime editing," and plans to donate most of it to support his charitable foundation.

"The ability to change a DNA sequence of our choosing into a new sequence of our choosing is a fundamentally very powerful capability," the 51-year-old said, foreseeing uses not just in human medicine but areas like developing more nutritious or disease-resistant crops.

- Correcting the code -

DNA is made up of four chemical "letters" -- the nucleotide bases A, G, T and C. Mutations in this sequence cause thousands of human diseases, yet until recently, gene editing could only fix a limited number of them.

Even CRISPR-Cas9, the groundbreaking technology that earned a Nobel Prize in 2020, has major limitations.

It cuts both strands of the DNA helix, making it most useful to disrupt rather than correct genes, while the process can introduce new errors.

"Being able to use genome editing to treat genetic diseases requires, in most cases, ways to correct a DNA misspelling, not simply to disrupt a gene," Liu said.

That insight led his lab to develop base editing, which uses the Cas9 protein -- disabled so it can no longer cut both DNA strands -- to find a target DNA sequence and another enzyme to convert one letter to another -- for example, C to T or G to A.

Reversing the change -- from T to C or A to G -- was tougher. Liu's team overcame the challenge by engineering entirely new enzymes.

These base editors can now correct about 30 percent of the mutations that cause genetic diseases. The technology is already in at least 14 clinical trials.

In one of them, Beam Therapeutics -- which Liu co-founded -- announced it had treated patients of AATD, a rare genetic disorder affecting the lungs and liver, with a single drug infusion.

While traditional gene therapies often disrupt faulty genes or work around them, base editing repairs the mutation itself.

"This was the first time that humans have corrected a mutation that causes a genetic disease in a patient," Liu said.

- Cystic fibrosis hope -

Base editing, quickly dubbed "CRISPR 2.0," can't fix every mutation.

About 70 percent of the roughly 100,000 known disease-causing mutations remain out of its reach, including those caused by missing or extra letters.

To expand the toolkit, Liu's lab introduced prime editing in 2019 -- a method capable of replacing entire sections of faulty DNA with corrected sequences.

If CRISPR is like scissors that cut DNA, and base editors are like using a pencil to correct individual letters, then prime editing is the equivalent of a word processor's "find and replace" function.

Creating this tool required a series of breakthroughs Liu's team describes as "small miracles." The result is, he said, "the most versatile way we know of to edit the human genome."

Among the targets Liu and his team have already pursued with prime editing: cystic fibrosis, a common genetic disease usually caused by three missing DNA letters that causes thick mucus buildup in the lungs and digestive system.

Liu's lab has made much of its work freely accessible, sharing DNA blueprints through a nonprofit library used by tens of thousands of labs worldwide.

"The science we create -- which is ultimately funded by society, through governments and donors -- ultimately goes back to benefit society."

This year's Breakthrough Prize awards come at a fraught moment for US science, as President Donald Trump's government strips funding for institutions like the National Institutes of Health (NIH).

"The NIH is a treasure, not just for this country but for the world," said Liu. "Trying to dismantle the heart of what supports science in this country is like burning your seed corn."

A.Wyss--NZN