Zürcher Nachrichten - Webb telescope may have already found most distant known galaxy

EUR -
AED 4.087691
AFN 77.216219
ALL 99.146863
AMD 431.530556
ANG 2.008679
AOA 1031.493152
ARS 1071.444832
AUD 1.636718
AWG 2.00463
AZN 1.833968
BAM 1.951391
BBD 2.250335
BDT 133.190246
BGN 1.959446
BHD 0.419383
BIF 3230.238279
BMD 1.11291
BND 1.439161
BOB 7.701667
BRL 6.030747
BSD 1.114592
BTN 93.214008
BWP 14.663221
BYN 3.647491
BYR 21813.042196
BZD 2.246534
CAD 1.51141
CDF 3194.052731
CHF 0.943726
CLF 0.037557
CLP 1036.308283
CNY 7.866943
CNH 7.873957
COP 4649.605752
CRC 577.330644
CUC 1.11291
CUP 29.492123
CVE 110.016412
CZK 25.100356
DJF 198.449303
DKK 7.459502
DOP 66.909416
DZD 147.515328
EGP 54.01173
ERN 16.693655
ETB 128.268622
FJD 2.449794
FKP 0.847547
GBP 0.839886
GEL 2.985379
GGP 0.847547
GHS 17.554492
GIP 0.847547
GMD 76.791162
GNF 9630.326265
GTQ 8.61561
GYD 233.107099
HKD 8.674791
HNL 27.647777
HRK 7.566689
HTG 146.879437
HUF 394.157231
IDR 16915.513413
ILS 4.200674
IMP 0.847547
INR 93.082762
IQD 1460.014134
IRR 46859.088964
ISK 152.513253
JEP 0.847547
JMD 175.104342
JOD 0.788716
JPY 159.072742
KES 143.776286
KGS 93.790539
KHR 4523.940499
KMF 492.46545
KPW 1001.618654
KRW 1481.155606
KWD 0.339471
KYD 0.928697
KZT 533.744026
LAK 24610.612066
LBP 99807.176845
LKR 339.266457
LRD 222.881353
LSL 19.418996
LTL 3.286135
LVL 0.673189
LYD 5.309004
MAD 10.808577
MDL 19.446874
MGA 5021.6758
MKD 61.47802
MMK 3614.689295
MNT 3781.669204
MOP 8.946281
MRU 44.118708
MUR 51.049094
MVR 17.083347
MWK 1932.41655
MXN 21.523736
MYR 4.68484
MZN 71.113011
NAD 19.418996
NGN 1825.529362
NIO 41.012723
NOK 11.696776
NPR 149.160304
NZD 1.785843
OMR 0.428437
PAB 1.114592
PEN 4.184283
PGK 4.425001
PHP 61.979083
PKR 309.981864
PLN 4.27323
PYG 8700.419088
QAR 4.063319
RON 4.974488
RSD 117.080389
RUB 103.309148
RWF 1500.840195
SAR 4.176335
SBD 9.260263
SCR 15.165156
SDG 669.441157
SEK 11.332482
SGD 1.439622
SHP 0.847547
SLE 25.426999
SLL 23337.167151
SOS 636.966462
SRD 33.223683
STD 23034.996587
SVC 9.751965
SYP 2796.220485
SZL 19.401981
THB 36.94413
TJS 11.846103
TMT 3.906315
TND 3.375772
TOP 2.615116
TRY 37.881682
TTD 7.575033
TWD 35.593074
TZS 3032.057276
UAH 46.18624
UGX 4138.685594
USD 1.11291
UYU 45.786543
UZS 14199.044041
VEF 4031576.086267
VES 40.879734
VND 27355.33557
VUV 132.126949
WST 3.113325
XAF 654.50164
XAG 0.036076
XAU 0.000431
XCD 3.007696
XDR 0.826041
XOF 654.47817
XPF 119.331742
YER 278.617301
ZAR 19.454062
ZMK 10017.526769
ZMW 29.005331
ZWL 358.356668
  • CMSC

    -0.0350

    25.02

    -0.14%

  • SCS

    -0.7900

    13.32

    -5.93%

  • RBGPF

    3.5000

    60.5

    +5.79%

  • GSK

    -0.5800

    41.85

    -1.39%

  • RIO

    2.2100

    65.12

    +3.39%

  • BTI

    -0.3210

    37.559

    -0.85%

  • CMSD

    0.1000

    25.08

    +0.4%

  • AZN

    0.6000

    79.18

    +0.76%

  • BP

    0.5200

    32.95

    +1.58%

  • BCC

    6.5000

    143.56

    +4.53%

  • RELX

    0.6500

    48.02

    +1.35%

  • BCE

    -0.2160

    35.394

    -0.61%

  • JRI

    -0.0500

    13.39

    -0.37%

  • NGG

    -1.1800

    68.87

    -1.71%

  • RYCEF

    0.3800

    6.93

    +5.48%

  • VOD

    -0.1650

    10.065

    -1.64%

Webb telescope may have already found most distant known galaxy
Webb telescope may have already found most distant known galaxy / Photo: Handout - University of Copenhagen/AFP

Webb telescope may have already found most distant known galaxy

Just a week after its first images were shown to the world, the James Webb Space Telescope may have found a galaxy that existed 13.5 billion years ago, a scientist who analyzed the data said Wednesday.

Text size:

Known as GLASS-z13, the galaxy dates back to 300 million years after the Big Bang, about 100 million years earlier than anything previously identified, Rohan Naidu of the Harvard Center for Astrophysics told AFP.

"We're potentially looking at the most distant starlight that anyone has ever seen," he said.

The more distant objects are from us, the longer it takes for their light to reach us, and so to gaze back into the distant universe is to see into the deep past.

Though GLASS-z13 existed in the earliest era of the universe, its exact age remains unknown as it could have formed anytime within the first 300 million years.

GLASS-z13 was spotted in so-called "early release" data from the orbiting observatory's main infrared imager, called NIRcam -- but the discovery was not revealed in the first image set published by NASA last week.

When translated from infrared into the visible spectrum, the galaxy appears as a blob of red with white in its center, as part of a wider image of the distant cosmos called a "deep field."

Naidu and colleagues -- a team totaling 25 astronomers from across the world -- have submitted their findings to a scientific journal.

For now, the research is posted on a "preprint" server, so it comes with the caveat that it has yet to be peer-reviewed -- but it has already set the global astronomy community abuzz.

"Astronomy records are crumbling already, and more are shaky," tweeted NASA's chief scientist Thomas Zurbuchen.

"Yes, I tend to only cheer once science results clear peer review. But, this looks very promising," he added.

Naidu said another team of astronomers led by Marco Castellano that worked on the same data has achieved similar conclusions, "so that gives us confidence."

- 'Work to be done' -

One of the great promises of Webb is its ability to find the earliest galaxies that formed after the Big Bang, 13.8 billion years ago.

Because these are so distant from Earth, by the time their light reaches us, it has been stretched by the expansion of the universe and shifted to the infrared region of the light spectrum, which Webb is equipped to detect with unprecedented clarity.

Naidu and colleagues combed through this infrared data of the distant universe, searching for a telltale signature of extremely distant galaxies.

Below a particular threshold of infrared wavelength, all photons -- packets of energy -- are absorbed by the neutral hydrogen of the universe that lies between the object and the observer.

By using data collected through different infrared filters pointed at the same region of space, they were able to detect where these drop-offs in photons occurred, from which they inferred the presence of these most distant galaxies.

"We searched all the early data for galaxies with this very striking signature, and these were the two systems that had by far the most compelling signature," said Naidu.

One of these is GLASS-z13, while the other, not as ancient, is GLASS-z11.

"There's strong evidence, but there's still work to be done," said Naidu.

In particular, the team wants to ask Webb's managers for telescope time to carry out spectroscopy -- an analysis of light that reveals detailed properties -- to measure its precise distance.

"Right now, our guess for the distance is based on what we don't see -- it would be great to have an answer for what we do see," said Naidu.

Already, however, the team have detected surprising properties.

For instance, the galaxy is the mass of a billion Suns, which is "potentially very surprising, and that is something we don't really understand" given how soon after the Big Bang it formed, Naidu said.

Launched last December and fully operational since last week, Webb is the most powerful space telescope ever built, with astronomers confident it will herald a new era of discovery.

H.Roth--NZN