Zürcher Nachrichten - The Nobel winners who helped prove quantum 'spooky action'

EUR -
AED 3.831072
AFN 72.927229
ALL 98.419269
AMD 410.271893
ANG 1.872215
AOA 957.496706
ARS 1061.692588
AUD 1.668305
AWG 1.877444
AZN 1.777282
BAM 1.955189
BBD 2.097545
BDT 124.141237
BGN 1.954562
BHD 0.391978
BIF 3071.340978
BMD 1.043024
BND 1.410859
BOB 7.178758
BRL 6.347889
BSD 1.038876
BTN 88.318423
BWP 14.358517
BYN 3.399738
BYR 20443.276614
BZD 2.088248
CAD 1.495916
CDF 2993.480167
CHF 0.932343
CLF 0.037343
CLP 1030.408256
CNY 7.610327
CNH 7.606363
COP 4547.280118
CRC 524.136339
CUC 1.043024
CUP 27.640144
CVE 110.230581
CZK 25.128859
DJF 184.992236
DKK 7.459297
DOP 63.260247
DZD 140.605096
EGP 53.072428
ERN 15.645365
ETB 129.499464
FJD 2.41674
FKP 0.826056
GBP 0.830004
GEL 2.931306
GGP 0.826056
GHS 15.271232
GIP 0.826056
GMD 75.098122
GNF 8975.197506
GTQ 8.004501
GYD 217.342135
HKD 8.110923
HNL 26.370766
HRK 7.481515
HTG 135.907563
HUF 414.018477
IDR 16867.059138
ILS 3.805965
IMP 0.826056
INR 88.607528
IQD 1360.875069
IRR 43898.289923
ISK 145.105945
JEP 0.826056
JMD 162.539247
JOD 0.739613
JPY 163.153034
KES 134.118122
KGS 90.743481
KHR 4174.696457
KMF 486.179751
KPW 938.721302
KRW 1508.651632
KWD 0.3212
KYD 0.86573
KZT 545.579643
LAK 22737.90012
LBP 93027.952144
LKR 305.004763
LRD 188.551125
LSL 19.125728
LTL 3.07978
LVL 0.630915
LYD 5.104406
MAD 10.455435
MDL 19.135025
MGA 4901.469523
MKD 61.515792
MMK 3387.702296
MNT 3544.196494
MOP 8.316603
MRU 41.315099
MUR 49.23465
MVR 16.066474
MWK 1801.337535
MXN 20.937842
MYR 4.701994
MZN 66.653144
NAD 19.125728
NGN 1616.208293
NIO 38.228063
NOK 11.812512
NPR 141.309876
NZD 1.845228
OMR 0.401355
PAB 1.038876
PEN 3.868392
PGK 4.212685
PHP 61.403232
PKR 289.16061
PLN 4.26442
PYG 8100.470639
QAR 3.787117
RON 4.976899
RSD 116.993992
RUB 107.216522
RWF 1448.147818
SAR 3.91792
SBD 8.744252
SCR 14.545014
SDG 627.382961
SEK 11.51065
SGD 1.414241
SHP 0.826056
SLE 23.784779
SLL 21871.701575
SOS 593.714613
SRD 36.642527
STD 21588.497505
SVC 9.090162
SYP 2620.630141
SZL 19.121029
THB 35.692677
TJS 11.364851
TMT 3.661015
TND 3.310266
TOP 2.442871
TRY 36.683145
TTD 7.050798
TWD 34.034966
TZS 2467.229611
UAH 43.568696
UGX 3810.81008
USD 1.043024
UYU 46.335532
UZS 13393.817798
VES 53.689938
VND 26550.18399
VUV 123.829936
WST 2.881655
XAF 655.752242
XAG 0.03535
XAU 0.000398
XCD 2.818826
XDR 0.792453
XOF 655.752242
XPF 119.331742
YER 261.147252
ZAR 19.11033
ZMK 9388.474223
ZMW 28.750023
ZWL 335.853405
  • BCE

    0.0500

    23.16

    +0.22%

  • BCC

    -0.2600

    122.75

    -0.21%

  • RIO

    -0.0900

    58.64

    -0.15%

  • CMSD

    0.0000

    23.56

    0%

  • CMSC

    0.0200

    23.86

    +0.08%

  • NGG

    0.8200

    58.5

    +1.4%

  • SCS

    -0.5800

    11.74

    -4.94%

  • RBGPF

    59.9600

    59.96

    +100%

  • GSK

    0.1700

    33.6

    +0.51%

  • RYCEF

    -0.0100

    7.27

    -0.14%

  • VOD

    0.0100

    8.39

    +0.12%

  • RELX

    -0.3100

    45.47

    -0.68%

  • AZN

    0.9100

    65.35

    +1.39%

  • BTI

    0.1131

    36.24

    +0.31%

  • BP

    0.1900

    28.6

    +0.66%

  • JRI

    0.1100

    12.06

    +0.91%

The Nobel winners who helped prove quantum 'spooky action'
The Nobel winners who helped prove quantum 'spooky action' / Photo: Jonathan NACKSTRAND - AFP

The Nobel winners who helped prove quantum 'spooky action'

Physicists Alain Aspect, John Clauser and Anton Zeilinger developed experimental tools that helped prove quantum entanglement -- a phenomenon Albert Einstein famously dismissed as "spooky action at a distance" -- is real, paving the way for its use in powerful computers.

Text size:

Here are mini biographies of the three scientists.

- John Clauser -

Born in 1942, John Francis Clauser's earliest memories were of gaping in wonder at the equipment in the lab of his father, who created the aeronautics department for Johns Hopkins, he told the American Institute of Physics in a 2002 oral history.

An electronics buff who built some of the first computer-driven video games at high school, Clauser opted for physics at college.

In the mid-1960s, he grew interested in the ideas of quantum mechanics pioneer John Bell, who strove to better understand entanglement -- when two particles behave as one and can affect each other, even at vast distances.

"I thought this is one of the most amazing papers I've ever read in my own life, and I kept wondering, gee, where's the experimental evidence?" Clauser told PBS in 2018.

Clauser believed he could test Bell's ideas in a laboratory, but was met with widespread scorn by leading physicists of the time.

He proposed the test independently of his thesis work on radio astronomy, and carried it out with collaborators in 1972 while at UC Berkeley.

By shining lasers at calcium atoms to emit entangled photons and measuring their properties, he was able to prove with hard data that what had defied the imagination even of the great Einstein -- was true.

- Alain Aspect -

Like Clauser, Frenchman Alain Aspect was seduced by the "limpid clarity" of Bell's theorem.

"Quantum strangeness has dominated my whole life as a physicist," he told AFP in a 2010 interview.

As a doctoral student, Aspect built on the work of Clauser, refining the experiment to eliminate possible loopholes in its design -- publishing his work in 1982.

The son of a teacher, Aspect was born in 1947 in a village in Gascony, and is currently a professor at Institut d'Optique Graduate School (Augustin Fresnel chair), in University Paris-Saclay, and at Ecole Polytechnique.

But his interest in the quantum realm stemmed from a period in his life spent away from academia -- he had gone to Cameroon to complete three years of voluntary service as a teacher.

During his free time, he came across a book written by Claude Cohen-Tannoudji on the subject (Cohen-Tannoudji won the Nobel in 1997), which in turn led him to Bell.

In a phone interview with the Nobel Foundation on Tuesday, Aspect emphasized the international makeup of his co-winners -- an American and an Austrian -- was an important signal in the face of rising nationalism around the world.

"It's important that scientists keep their international community at a time when... nationalism is taking over in many countries," he said.

- Anton Zeilinger -

Nicknamed the "quantum pope", the physicist Anton Zeilinger, born in 1945 in Ried im Innkreis in Austria, became one of the most famous scientists in his country by succeeding for the first time in 1997 in quantum teleportation of light particles.

A success quickly compared to the "teleportation" of the television series "Star Trek."

Using the properties of quantum entanglement for cryptography, Professor Zeilinger encrypted the first banking transaction by this means in Vienna in 2004.

In 2007, his team created entangled pairs of photons and fired one of each pair over 144 kilometers (89 miles) between the Canary Islands La Palma and Tenerife, to generate a quantum cryptographic key.

His fame comes in part from his tireless didactic talents: always keen to popularize his knowledge to the general public, he even initiated the Dalai Lama in 2012 with infectious enthusiasm.

Attached to the University of Vienna, Zeilinger corresponds in all respects to the image of the scientist: gray hair, a full beard, and small round glasses.

He had already received countless awards and did not really believe that he would one day win the Nobel. "There are so many other candidates," he said a few years ago to the Austria Press Agency

R.Schmid--NZN