Zürcher Nachrichten - Nobel physics winner wanted to topple quantum theory he vindicated

EUR -
AED 4.09891
AFN 77.000743
ALL 99.421038
AMD 432.709522
ANG 2.014168
AOA 1036.161206
ARS 1074.372779
AUD 1.63902
AWG 2.008713
AZN 1.892529
BAM 1.956723
BBD 2.256485
BDT 133.554215
BGN 1.9648
BHD 0.420506
BIF 3229.563839
BMD 1.115952
BND 1.443094
BOB 7.722713
BRL 6.054487
BSD 1.117637
BTN 93.468734
BWP 14.703291
BYN 3.657459
BYR 21872.650742
BZD 2.252673
CAD 1.513738
CDF 3203.896851
CHF 0.94626
CLF 0.037647
CLP 1038.794656
CNY 7.887576
CNH 7.893003
COP 4648.217271
CRC 578.908317
CUC 1.115952
CUP 29.572717
CVE 110.757872
CZK 25.101324
DJF 198.32694
DKK 7.460585
DOP 67.177415
DZD 147.687163
EGP 54.165053
ERN 16.739274
ETB 131.123383
FJD 2.454868
FKP 0.849863
GBP 0.840607
GEL 3.047018
GGP 0.849863
GHS 17.515096
GIP 0.849863
GMD 76.437869
GNF 9655.77257
GTQ 8.639154
GYD 233.744111
HKD 8.697659
HNL 27.8426
HRK 7.587367
HTG 147.280815
HUF 394.493357
IDR 16964.863137
ILS 4.184785
IMP 0.849863
INR 93.303427
IQD 1461.896555
IRR 46973.192466
ISK 152.330631
JEP 0.849863
JMD 175.58285
JOD 0.790877
JPY 159.429268
KES 143.957565
KGS 94.046768
KHR 4541.922966
KMF 492.525074
KPW 1004.355779
KRW 1483.138649
KWD 0.340298
KYD 0.931235
KZT 535.202589
LAK 24645.790031
LBP 99618.896173
LKR 340.193571
LRD 216.77315
LSL 19.533359
LTL 3.295115
LVL 0.675027
LYD 5.295174
MAD 10.819142
MDL 19.500017
MGA 5083.159551
MKD 61.600735
MMK 3624.567164
MNT 3792.00338
MOP 8.970728
MRU 44.319988
MUR 51.188974
MVR 17.141333
MWK 1937.291581
MXN 21.557065
MYR 4.702602
MZN 71.253242
NAD 19.531837
NGN 1830.518009
NIO 41.033592
NOK 11.722223
NPR 149.567915
NZD 1.789962
OMR 0.429598
PAB 1.117637
PEN 4.179206
PGK 4.368062
PHP 62.005593
PKR 310.34939
PLN 4.277191
PYG 8724.194741
QAR 4.062342
RON 4.97446
RSD 117.073885
RUB 102.864693
RWF 1497.607005
SAR 4.187662
SBD 9.27014
SCR 15.202634
SDG 671.245006
SEK 11.344251
SGD 1.442485
SHP 0.849863
SLE 25.496483
SLL 23400.940677
SOS 637.208205
SRD 33.314523
STD 23097.94437
SVC 9.778614
SYP 2803.861723
SZL 19.532173
THB 36.971243
TJS 11.878474
TMT 3.90583
TND 3.374631
TOP 2.622262
TRY 38.03529
TTD 7.595733
TWD 35.468847
TZS 3040.967693
UAH 46.312453
UGX 4149.995388
USD 1.115952
UYU 45.911664
UZS 14211.64293
VEF 4042593.182683
VES 41.017307
VND 27430.089553
VUV 132.488012
WST 3.121833
XAF 656.290198
XAG 0.036273
XAU 0.000431
XCD 3.015915
XDR 0.828298
XOF 655.623781
XPF 119.331742
YER 279.350564
ZAR 19.539748
ZMK 10044.903741
ZMW 29.084593
ZWL 359.33595
  • BCC

    7.6300

    144.69

    +5.27%

  • CMSD

    0.0300

    25.01

    +0.12%

  • BCE

    -0.4200

    35.19

    -1.19%

  • GSK

    -0.8100

    41.62

    -1.95%

  • RIO

    2.2700

    65.18

    +3.48%

  • BTI

    -0.3100

    37.57

    -0.83%

  • RBGPF

    3.5000

    60.5

    +5.79%

  • SCS

    -0.8000

    13.31

    -6.01%

  • JRI

    -0.0400

    13.4

    -0.3%

  • NGG

    -1.2200

    68.83

    -1.77%

  • CMSC

    0.0650

    25.12

    +0.26%

  • BP

    0.3300

    32.76

    +1.01%

  • RYCEF

    0.4000

    6.95

    +5.76%

  • VOD

    -0.1700

    10.06

    -1.69%

  • RELX

    0.7600

    48.13

    +1.58%

  • AZN

    0.3200

    78.9

    +0.41%

Nobel physics winner wanted to topple quantum theory he vindicated
Nobel physics winner wanted to topple quantum theory he vindicated / Photo: Remi Vorano - AFP

Nobel physics winner wanted to topple quantum theory he vindicated

American physicist John Clauser won the 2022 Nobel Prize for a groundbreaking experiment vindicating quantum mechanics -- a fundamental theory governing the subatomic world that is today the foundation for an emerging class of ultra-powerful computers.

Text size:

But when he carried out his work in the 1970s, Clauser was actually hoping for the opposite result: to upend the field and prove Albert Einstein had been right to dismiss it, he told AFP in an interview.

"The truth is that I strongly hoped that Einstein would win, which would mean that quantum mechanics was giving incorrect predictions," the 79-year-old said, speaking by telephone from his home in Walnut Creek, just outside San Francisco.

Born in Pasadena in 1942, Clauser credits his father, an engineer who designed planes in the war and founded the aeronautics department at Johns Hopkins University in Baltimore, for instilling in him a lifelong love of science.

"I used to wander around his laboratory and say 'Wow, oh boy, when I grow up I want to be a scientist so I can play with these fun toys too.'"

As a graduate student at Columbia in the mid-1960s, he grew interested in quantum physics alongside his thesis work on radio astronomy.

- Quantum entanglement -

According to quantum mechanics, two or more particles can exist in what's called an entangled state -- what happens to one in an entangled pair determines what happens to the other, no matter their distance.

The fact that this occurred instantly contradicted Einstein's theory of relativity which held that nothing -- including information -- can travel faster than the speed of light.

In 1935 he dismissed this element of quantum entanglement -- called nonlocality -- as "spooky action at a distance."

Einstein instead believed that "hidden variables" that instructed the particles what state to take must be at play, placing him at odds with his great friend but intellectual adversary Niels Bohr, a founding father of quantum theory.

In 1964, the Northern Irish physicist John Bell proposed a theoretical way to measure whether there were in fact hidden variables inside quantum particles. Clauser realized he could resolve the long standing Bohr-Einstein debate if he could create the right experiment.

"My thesis advisor thought it was a distraction from my work in astrophysics," he recalled, but undeterred, he wrote to Bell, who encouraged him to take up the idea.

It wasn't until Clauser had completed his doctorate and taken up a job at UC Berkeley that he was actually able to start working on the experiment, along with collaborator Stuart Freedman.

They focused a laser on calcium atoms, making it emit particles of entangled photon pairs that shot off in opposite directions, and used filters set to the side to measure whether they were correlated.

After hundreds of thousands of runs, they found the pairs correlated more than Einstein would have predicted, proving the reality of "spooky action" with hard data.

At the time, leading lights of the field were unimpressed, said Clauser, including the renowned physicist Richard Feynman who told him the work was "totally silly, you're wasting everybody's time and money" and threw him out his office.

Questioning the foundation of quantum mechanics was deemed unnecessary.

- Quantum computing -

That wasn't the view of the Nobel committee, who awarded Clauser, Alain Aspect of France, and Anton Zeilinger of Austria the world's most prestigious science prize for their pioneering work in advancing the field.

"It took a long time for people to realize the importance of the work," chuckled Clauser.

"But I suppose it is a certain vindication, everyone was telling me it was silly."

Einstein's theory had more appeal to Clauser than Bohr's, which he confessed to not fully grasping.

But over time, he came to realize the true value of his and his co-winners' experiments. Demonstrating that a single bit of information can be distributed through space is today at the core of quantum computers.

Clauser pointed to China's quantum-encrypted Micius communications satellite, which relies on entangled photons thousands of kilometers apart.

"We did not prove what quantum mechanics is -- we proved what quantum mechanics isn't," he said, "and knowing what it is not then has practical applications."

P.Gashi--NZN