Zürcher Nachrichten - Webb observations point to a shorter cosmic dark age

EUR -
AED 3.819087
AFN 72.682799
ALL 98.089398
AMD 408.896788
ANG 1.86594
AOA 954.524768
ARS 1062.897161
AUD 1.665979
AWG 1.871617
AZN 1.777387
BAM 1.948636
BBD 2.090515
BDT 123.725154
BGN 1.955014
BHD 0.392133
BIF 3061.046786
BMD 1.039787
BND 1.406131
BOB 7.154697
BRL 6.361111
BSD 1.035394
BTN 88.022406
BWP 14.310391
BYN 3.388344
BYR 20379.834362
BZD 2.081249
CAD 1.497783
CDF 2984.18977
CHF 0.932398
CLF 0.03737
CLP 1031.154673
CNY 7.589614
CNH 7.599344
COP 4564.666982
CRC 522.379595
CUC 1.039787
CUP 27.554368
CVE 109.862174
CZK 25.147272
DJF 184.372199
DKK 7.457771
DOP 63.048218
DZD 140.184369
EGP 53.110785
ERN 15.596812
ETB 129.065422
FJD 2.410903
FKP 0.823493
GBP 0.829745
GEL 2.92165
GGP 0.823493
GHS 15.220047
GIP 0.823493
GMD 74.864534
GNF 8945.1154
GTQ 7.977672
GYD 216.613671
HKD 8.078857
HNL 26.282379
HRK 7.458298
HTG 135.452043
HUF 414.927541
IDR 16823.397298
ILS 3.791088
IMP 0.823493
INR 88.514664
IQD 1356.313833
IRR 43762.057998
ISK 145.144124
JEP 0.823493
JMD 161.994466
JOD 0.73731
JPY 163.16967
KES 134.392694
KGS 90.461796
KHR 4160.704156
KMF 484.670921
KPW 935.808139
KRW 1511.1543
KWD 0.320421
KYD 0.862828
KZT 543.751028
LAK 22661.689661
LBP 92716.151012
LKR 303.98248
LRD 187.91916
LSL 19.061624
LTL 3.070222
LVL 0.628957
LYD 5.087298
MAD 10.420392
MDL 19.07089
MGA 4885.041302
MKD 61.568897
MMK 3377.189135
MNT 3533.197679
MOP 8.288728
MRU 41.176624
MUR 48.713702
MVR 15.980014
MWK 1794.887232
MXN 20.936114
MYR 4.668836
MZN 66.446297
NAD 19.061624
NGN 1607.979191
NIO 38.099935
NOK 11.79236
NPR 140.836249
NZD 1.841815
OMR 0.400316
PAB 1.035394
PEN 3.855426
PGK 4.198565
PHP 60.928948
PKR 288.191432
PLN 4.273306
PYG 8073.320348
QAR 3.774424
RON 4.977253
RSD 117.035318
RUB 104.212733
RWF 1443.294071
SAR 3.906118
SBD 8.717115
SCR 14.499106
SDG 625.434214
SEK 11.481583
SGD 1.411215
SHP 0.823493
SLE 23.710672
SLL 21803.826448
SOS 591.724664
SRD 36.528736
STD 21521.501253
SVC 9.059694
SYP 2612.497459
SZL 19.056942
THB 35.631446
TJS 11.32676
TMT 3.649654
TND 3.299171
TOP 2.435285
TRY 36.618975
TTD 7.027166
TWD 34.012527
TZS 2503.289383
UAH 43.422667
UGX 3798.037414
USD 1.039787
UYU 46.180229
UZS 13348.925833
VES 53.527677
VND 26462.591046
VUV 123.445651
WST 2.872712
XAF 653.554362
XAG 0.035083
XAU 0.000397
XCD 2.810077
XDR 0.789797
XOF 653.554362
XPF 119.331742
YER 260.336802
ZAR 19.162504
ZMK 9359.342251
ZMW 28.653662
ZWL 334.81114
  • RBGPF

    59.9600

    59.96

    +100%

  • RYCEF

    -0.0100

    7.27

    -0.14%

  • RIO

    -0.0900

    58.64

    -0.15%

  • CMSC

    0.0200

    23.86

    +0.08%

  • CMSD

    0.0000

    23.56

    0%

  • NGG

    0.8200

    58.5

    +1.4%

  • SCS

    -0.5800

    11.74

    -4.94%

  • BCC

    -0.2600

    122.75

    -0.21%

  • VOD

    0.0100

    8.39

    +0.12%

  • RELX

    -0.3100

    45.47

    -0.68%

  • GSK

    0.1700

    33.6

    +0.51%

  • BCE

    0.0500

    23.16

    +0.22%

  • JRI

    0.1100

    12.06

    +0.91%

  • BP

    0.1900

    28.6

    +0.66%

  • BTI

    0.1131

    36.24

    +0.31%

  • AZN

    0.9100

    65.35

    +1.39%

Webb observations point to a shorter cosmic dark age
Webb observations point to a shorter cosmic dark age / Photo: Handout - ESA, NASA, CSA, STScI/AFP

Webb observations point to a shorter cosmic dark age

The first galaxies may have formed far earlier than previously thought, according to observations from the James Webb Space Telescope that are reshaping astronomers' understanding of the early universe.

Text size:

Researchers using the powerful observatory have now published papers in the journal Astrophysical Journal Letters, documenting two exceptionally bright, exceptionally distant galaxies, based on data gathered within the first few days of Webb going operational in July.

Their extreme luminosity points to two intriguing possibilities, astronomers on a NASA press call said Thursday.

The first is that these galaxies are very massive, with lots of low-mass stars like galaxies today, and had to start forming 100 million years after the Big Bang which occurred 13.8 billion years ago.

That is 100 million years earlier than the currently held end of the so-called cosmic dark age, when the universe contained only gas and dark matter.

A second possibility is that they are made up of "Population III" stars, which have never been observed but are theorized to have been made of only helium and hydrogen, before heavier elements existed.

Because these stars burned so brightly at extreme temperatures, galaxies made of them would not need to be as massive to account for the brightness seen by Webb, and could have started forming later.

"We are seeing such bright, such luminous galaxies at this early time, that we're really uncertain about what is happening here," Garth Illingworth of the University of California at Santa Cruz told reporters.

The galaxies' rapid discovery also defied expectations that Webb would need to survey a much larger volume of space to find such galaxies.

"It's sort of a bit of a surprise that there are so many that formed so early," added astrophysicist Jeyhan Kartaltepe of the Rochester Institute of Technology.

- Most distant starlight -

The two galaxies were found to have definitely existed approximately 450 and 350 million years after the Big Bang.

The second of these, called GLASS-z12, now represents the most distant starlight ever seen.

The more distant objects are from us, the longer it takes for their light to reach us, and so to gaze at the distant universe is to see into the deep past.

As these galaxies are so distant from Earth, by the time their light reaches us, it has been stretched by the expansion of the universe and shifted to the infrared region of the light spectrum.

Webb can detect infrared light at a far higher resolution than any instrument before it.

Illingworth, who co-authored the paper on GLASS-z12, told AFP disentangling the two competing hypotheses would be a "real challenge," though the Population III idea was more appealing to him, as it would not require upending existing cosmological models.

Teams are hoping to soon use Webb's powerful spectrograph instruments -- which analyze the light from objects to reveal their detailed properties -- to confirm the galaxies' distance, and better understand their composition.

The Atacama Large Millimeter/submillimeter Array (ALMA), a ground telescope in northern Chile, might also be able to help in weighing the mass of the two galaxies, which would help decide between the two hypotheses.

"JWST has opened up a new frontier, bringing us closer to understanding how it all began," summed up Tommaso Treu of the University of California at Los Angeles, principal investigator on one of the Webb programs.

W.O.Ludwig--NZN