Zürcher Nachrichten - Researchers dig up secrets of 'self-healing' Roman concrete

EUR -
AED 4.09901
AFN 76.989056
ALL 99.290141
AMD 432.192289
ANG 2.011913
AOA 1035.386702
ARS 1074.098225
AUD 1.639961
AWG 2.008793
AZN 1.901624
BAM 1.956573
BBD 2.253991
BDT 133.402737
BGN 1.953965
BHD 0.420623
BIF 3236.121309
BMD 1.115996
BND 1.44247
BOB 7.713911
BRL 6.15305
BSD 1.116341
BTN 93.301912
BWP 14.756966
BYN 3.653344
BYR 21873.525049
BZD 2.250149
CAD 1.514028
CDF 3204.025425
CHF 0.949606
CLF 0.03764
CLP 1038.602283
CNY 7.869898
CNH 7.861953
COP 4633.616123
CRC 579.218597
CUC 1.115996
CUP 29.573899
CVE 110.307124
CZK 25.054454
DJF 198.335279
DKK 7.459212
DOP 67.006489
DZD 147.641875
EGP 54.135082
ERN 16.739943
ETB 129.539788
FJD 2.455531
FKP 0.849897
GBP 0.83852
GEL 3.047105
GGP 0.849897
GHS 17.549623
GIP 0.849897
GMD 76.450036
GNF 9644.683106
GTQ 8.629489
GYD 233.528133
HKD 8.695151
HNL 27.691947
HRK 7.58767
HTG 147.295589
HUF 393.020806
IDR 16929.717789
ILS 4.225859
IMP 0.849897
INR 93.170894
IQD 1462.378108
IRR 46975.073296
ISK 152.114535
JEP 0.849897
JMD 175.389335
JOD 0.790799
JPY 160.589064
KES 144.008576
KGS 94.009848
KHR 4533.7923
KMF 492.545341
KPW 1004.395926
KRW 1488.07353
KWD 0.340469
KYD 0.930276
KZT 535.211989
LAK 24650.303003
LBP 99966.527279
LKR 340.594644
LRD 223.26426
LSL 19.597823
LTL 3.295247
LVL 0.675055
LYD 5.301286
MAD 10.824867
MDL 19.479875
MGA 5048.905452
MKD 61.626661
MMK 3624.712047
MNT 3792.154956
MOP 8.960782
MRU 44.363935
MUR 51.202327
MVR 17.142123
MWK 1935.530467
MXN 21.676597
MYR 4.692807
MZN 71.256777
NAD 19.597647
NGN 1829.620351
NIO 41.08569
NOK 11.718262
NPR 149.286016
NZD 1.789531
OMR 0.429634
PAB 1.116321
PEN 4.184198
PGK 4.369884
PHP 62.08849
PKR 310.175419
PLN 4.270192
PYG 8709.44302
QAR 4.069909
RON 4.973218
RSD 117.079418
RUB 103.062741
RWF 1504.908406
SAR 4.187915
SBD 9.27051
SCR 14.830813
SDG 671.275802
SEK 11.359865
SGD 1.44083
SHP 0.849897
SLE 25.497503
SLL 23401.876073
SOS 637.957914
SRD 33.708707
STD 23098.867655
SVC 9.76773
SYP 2803.973801
SZL 19.604926
THB 36.761326
TJS 11.866478
TMT 3.905987
TND 3.382537
TOP 2.613779
TRY 38.072924
TTD 7.592866
TWD 35.712252
TZS 3042.431049
UAH 46.142795
UGX 4135.783196
USD 1.115996
UYU 46.127615
UZS 14205.615769
VEF 4042754.77568
VES 41.018985
VND 27459.08591
VUV 132.493308
WST 3.121958
XAF 656.204651
XAG 0.035869
XAU 0.000426
XCD 3.016036
XDR 0.827327
XOF 656.207592
XPF 119.331742
YER 279.361784
ZAR 19.504527
ZMK 10045.308782
ZMW 29.554154
ZWL 359.350313
  • RBGPF

    3.5000

    60.5

    +5.79%

  • CMSC

    0.0100

    25.13

    +0.04%

  • CMSD

    0.0400

    25.05

    +0.16%

  • RYCEF

    0.0000

    6.95

    0%

  • BCC

    -3.6800

    141.01

    -2.61%

  • NGG

    0.8200

    69.65

    +1.18%

  • RIO

    -1.5550

    63.625

    -2.44%

  • RELX

    -0.1750

    47.955

    -0.36%

  • JRI

    -0.0750

    13.325

    -0.56%

  • SCS

    -0.4450

    12.865

    -3.46%

  • VOD

    -0.0600

    10

    -0.6%

  • GSK

    -0.8050

    40.815

    -1.97%

  • AZN

    -0.5750

    78.325

    -0.73%

  • BCE

    -0.2950

    34.895

    -0.85%

  • BTI

    -0.1450

    37.425

    -0.39%

  • BP

    -0.0850

    32.675

    -0.26%

Researchers dig up secrets of 'self-healing' Roman concrete
Researchers dig up secrets of 'self-healing' Roman concrete / Photo: Filippo MONTEFORTE - AFP

Researchers dig up secrets of 'self-healing' Roman concrete

How have Rome's ancient aqueducts and architectural marvels such as the Pantheon, which features the world's largest unreinforced concrete dome, endured the test of time?

Text size:

Researchers at the Massachusetts Institute of Technology (MIT) and other institutions believe they have uncovered the mystery of the durability of the 2,000-year-old structures -- self-healing concrete.

The secret lies in an ingredient of the ancient concrete used by the Romans that the researchers, whose findings are published in the latest edition of the journal Science Advances, said has been overlooked in previous studies.

The durability of the concrete used by the Romans has most frequently been attributed to the use of volcanic ash from Pozzuoli on the Bay of Naples, which was shipped across the Roman empire for construction.

But the researchers focused their attention on another component of the ancient concrete mix, small white chunks called "lime clasts."

"Ever since I first began working with ancient Roman concrete, I've always been fascinated by these features," said MIT professor of civil and environmental engineering Admir Masic, an author of the study.

"These are not found in modern concrete formulations, so why are they present in these ancient materials?"

The researchers said the lime clasts had been thought to be the result of "sloppy mixing practices" or poor-quality raw materials.

But they are in fact what gives the ancient concrete a "previously unrecognized self-healing capability."

"The idea that the presence of these lime clasts was simply attributed to low quality control always bothered me," said Masic.

"If the Romans put so much effort into making an outstanding construction material... why would they put so little effort into ensuring the production of a well-mixed final product?"

For the study, the researchers examined 2,000-year-old Roman concrete samples from the masonry mortar of a city wall in Privernum, Italy.

They found that a process known as "hot mixing" is what gave the concrete its "super-durable nature" in which the Romans mixed quicklime with water and the volcanic ash at high temperatures.

"The benefits of hot mixing are twofold," Masic said.

"First, when the overall concrete is heated to high temperatures, it allows chemistries that are not possible if you only used slaked lime, producing high-temperature-associated compounds that would not otherwise form.

"Second, this increased temperature significantly reduces curing and setting times since all the reactions are accelerated, allowing for much faster construction," he said.

It is the lime clasts that give the ancient concrete its "self-healing functionality," according to the research team, which also included scientists from Switzerland and Italy.

Tiny cracks in the concrete would tend to travel through the high-surface-area lime clasts and, when exposed to water, would recrystallize as calcium carbonate, filling the crack almost like glue.

"These reactions take place spontaneously and therefore automatically heal the cracks before they spread," said the researchers, who conducted tests using modern concrete and the ancient formula.

W.O.Ludwig--NZN