Zürcher Nachrichten - Drones help solve forest carbon capture riddle

EUR -
AED 4.100541
AFN 77.413379
ALL 99.399129
AMD 432.522876
ANG 2.01379
AOA 1036.582754
ARS 1074.840314
AUD 1.638402
AWG 2.009533
AZN 1.897724
BAM 1.956408
BBD 2.256061
BDT 133.531523
BGN 1.965931
BHD 0.42069
BIF 3238.849139
BMD 1.116407
BND 1.442823
BOB 7.721263
BRL 6.056951
BSD 1.117427
BTN 93.461652
BWP 14.702308
BYN 3.656772
BYR 21881.580359
BZD 2.25225
CAD 1.514613
CDF 3205.205045
CHF 0.946283
CLF 0.037662
CLP 1039.219035
CNY 7.873799
CNH 7.872619
COP 4650.114928
CRC 578.833333
CUC 1.116407
CUP 29.58479
CVE 110.296334
CZK 25.090913
DJF 198.97831
DKK 7.459754
DOP 67.075451
DZD 147.825397
EGP 54.173877
ERN 16.746107
ETB 128.596137
FJD 2.455869
FKP 0.85021
GBP 0.83926
GEL 3.047887
GGP 0.85021
GHS 17.599236
GIP 0.85021
GMD 76.474898
GNF 9654.915838
GTQ 8.637454
GYD 233.728494
HKD 8.699742
HNL 27.718371
HRK 7.590465
HTG 147.253152
HUF 394.292293
IDR 16913.28939
ILS 4.20618
IMP 0.85021
INR 93.316901
IQD 1463.742058
IRR 46992.371728
ISK 152.289464
JEP 0.85021
JMD 175.553018
JOD 0.791199
JPY 160.503655
KES 144.139301
KGS 94.085197
KHR 4535.288434
KMF 492.726608
KPW 1004.765812
KRW 1489.013615
KWD 0.340571
KYD 0.931181
KZT 535.171625
LAK 24673.45152
LBP 100061.122739
LKR 340.132722
LRD 223.475489
LSL 19.46858
LTL 3.29646
LVL 0.675304
LYD 5.32256
MAD 10.836176
MDL 19.498889
MGA 5034.475344
MKD 61.633614
MMK 3626.046911
MNT 3793.551484
MOP 8.970209
MRU 44.231754
MUR 51.22014
MVR 17.147489
MWK 1937.559121
MXN 21.703614
MYR 4.686123
MZN 71.282382
NAD 19.46858
NGN 1830.829635
NIO 41.122419
NOK 11.727561
NPR 149.530444
NZD 1.789646
OMR 0.429775
PAB 1.117427
PEN 4.194911
PGK 4.43634
PHP 62.087309
PKR 310.770571
PLN 4.277173
PYG 8722.55613
QAR 4.073657
RON 4.974597
RSD 117.085453
RUB 103.966336
RWF 1504.840991
SAR 4.189301
SBD 9.273924
SCR 15.205395
SDG 671.516557
SEK 11.363724
SGD 1.441756
SHP 0.85021
SLE 25.506892
SLL 23410.494226
SOS 638.592859
SRD 33.328128
STD 23107.374219
SVC 9.776953
SYP 2805.006413
SZL 19.453701
THB 36.873802
TJS 11.877787
TMT 3.907425
TND 3.384361
TOP 2.614734
TRY 38.083886
TTD 7.595294
TWD 35.710288
TZS 3046.342404
UAH 46.304169
UGX 4149.215921
USD 1.116407
UYU 45.903041
UZS 14235.29914
VEF 4044243.591204
VES 41.033447
VND 27452.452093
VUV 132.542101
WST 3.123107
XAF 656.149283
XAG 0.035721
XAU 0.000428
XCD 3.017146
XDR 0.828143
XOF 656.149283
XPF 119.331742
YER 279.464658
ZAR 19.611015
ZMK 10049.009427
ZMW 29.079391
ZWL 359.48265
  • CMSC

    0.0650

    25.12

    +0.26%

  • CMSD

    0.0300

    25.01

    +0.12%

  • BCC

    7.6300

    144.69

    +5.27%

  • NGG

    -1.2200

    68.83

    -1.77%

  • GSK

    -0.8100

    41.62

    -1.95%

  • BCE

    -0.4200

    35.19

    -1.19%

  • RIO

    2.2700

    65.18

    +3.48%

  • SCS

    -0.8000

    13.31

    -6.01%

  • AZN

    0.3200

    78.9

    +0.41%

  • JRI

    -0.0400

    13.4

    -0.3%

  • RBGPF

    60.5000

    60.5

    +100%

  • RYCEF

    -0.0200

    6.93

    -0.29%

  • BTI

    -0.3100

    37.57

    -0.83%

  • VOD

    -0.1700

    10.06

    -1.69%

  • BP

    0.3300

    32.76

    +1.01%

  • RELX

    0.7600

    48.13

    +1.58%

Drones help solve forest carbon capture riddle
Drones help solve forest carbon capture riddle / Photo: MANAN VATSYAYANA - AFP

Drones help solve forest carbon capture riddle

On a hillside overlooking cabbage fields outside the northern Thai city of Chiang Mai, a drone's rotors begin to whir, lifting it over a patch of forest.

Text size:

It moves back and forth atop the rich canopy, transmitting photos to be knitted into a 3D model that reveals the woodland's health and helps estimate how much carbon it can absorb.

Drones are part of an increasingly sophisticated arsenal used by scientists to understand forests and their role in the battle against climate change.

The basic premise is simple: woodlands suck in and store carbon dioxide, the greenhouse gas that is the largest contributor to climate change.

But how much they absorb is a complicated question.

A forest's size is a key part of the answer -- and deforestation has caused tree cover to fall 12 percent globally since 2000, according to Global Forest Watch.

But composition is also important: different species sequester carbon differently, and trees' age and size matter, too.

Knowing how much carbon forests store is crucial to understanding how quickly the world needs to cut emissions, and most current estimates mix high-level imagery from satellites with small, labour-intensive ground surveys.

"Normally, we would go into this forest, we would put in the pole, we would have our piece of string, five metres long. We would walk around in a circle, we would measure all the trees in a circle," explained Stephen Elliott, research director at Chiang Mai University's Forest Restoration Research Unit (FORRU).

But "if you've got 20 students stomping around with tape measures and poles... you're going to trash the understory," he said, referring to the layer of vegetation between the forest floor and the canopy.

That is where the drone comes in, he said, gesturing to the Phantom model hovering overhead.

"With this, you don't set foot in the forest."

- 'Every tree' -

Three measurements are needed to estimate a tree's absorptive capacity: height, girth and wood density, which differs by species.

As an assistant looks through binoculars for birds that might collide with the drone, the machine flies a path plotted into a computer programme.

"We collect data or capture (images) every three seconds," explained Worayut Takaew, a FORRU field research officer and drone operator.

"The overlapping images are then rendered into a 3D model that can be viewed from different angles."

The patch of woodland being surveyed is part of a decades-long project led by Elliott and his team that has reforested around 100 hectares by planting a handful of key species.

Their goal was not large-scale reforestation, but developing best practices: planting native species, encouraging the return of animals that bring in seeds from other species and working with local communities.

The drone's 3D model is a potent visual representation of their success, particularly compared to straggly untouched control plots nearby.

But it is also being developed as a way to avoid labour-intensive ground surveys.

"Once you've got the model, you can measure the height of every tree in the model. Not samples, every tree," said Elliott.

A forest's carbon potential goes beyond its trees, though, with leaf litter and soil also serving as stores.

So these too are collected for analysis, which Elliott says shows their reforested plots store carbon at levels close to undamaged woodland nearby.

- 'More and more precise' -

But for all its bird's-eye insights, the drone has one major limitation: it cannot see below the canopy.

For that, researchers need technology like LiDAR -- high-resolution, remote-sensing equipment that effectively scans the whole forest.

"You can go inside the forest... and really reconstruct the shape and the size of each tree," explained Emmanuel Paradis, a researcher at France's National Research Institute for Sustainable Development.

He is leading a multi-year project to build the most accurate analysis yet of how much carbon Thailand's forests can store.

It will survey five different types of forests, including some of FORRU's plots, using drone-mounted LiDAR and advanced analysis of the microbes and fungi in soil that sustain trees.

"The aim is to estimate at the country level... how much carbon can be stored by one hectare anywhere in Thailand," he said.

The stakes are high at a time of fierce debate about whether existing estimates of the world's forest carbon capacity are right.

"Many people, and I'm a bit of this opinion, think that these estimates are not accurate enough," Paradis said.

"Estimations which are too optimistic can give too much hope and too much optimism on the possibilities of forests to store carbon," he warned.

The urgency of the question is driving fast developments, including the launch next year of the European Space Agency's Biomass satellite, designed to monitor forest carbon stocks.

"The technology is evolving, the satellites are more and more precise... and the statistical technologies are more and more precise," said Paradis.

W.O.Ludwig--NZN