Zürcher Nachrichten - En Suède, une installation européenne de pointe pour sonder la matière

EUR -
AED 4.097406
AFN 77.400559
ALL 99.383558
AMD 432.560822
ANG 2.013475
AOA 1036.906361
ARS 1073.42574
AUD 1.634959
AWG 2.009415
AZN 1.874953
BAM 1.956049
BBD 2.255708
BDT 133.508213
BGN 1.964124
BHD 0.420454
BIF 3237.949872
BMD 1.115567
BND 1.442597
BOB 7.720053
BRL 6.028677
BSD 1.117252
BTN 93.436539
BWP 14.698226
BYN 3.656199
BYR 21865.116772
BZD 2.251897
CAD 1.511052
CDF 3201.677982
CHF 0.945862
CLF 0.037653
CLP 1038.949977
CNY 7.882569
CNH 7.886262
COP 4661.720985
CRC 578.708913
CUC 1.115567
CUP 29.56253
CVE 110.279055
CZK 25.075761
DJF 198.923064
DKK 7.459061
DOP 67.069149
DZD 147.456409
EGP 54.1175
ERN 16.733508
ETB 128.57484
FJD 2.452407
FKP 0.84957
GBP 0.839392
GEL 2.992506
GGP 0.84957
GHS 17.5964
GIP 0.84957
GMD 76.973793
GNF 9653.316876
GTQ 8.636178
GYD 233.663599
HKD 8.694786
HNL 27.713781
HRK 7.584754
HTG 147.230085
HUF 394.395954
IDR 16921.146134
ILS 4.190249
IMP 0.84957
INR 93.324226
IQD 1463.499646
IRR 46970.956117
ISK 152.503695
JEP 0.84957
JMD 175.522371
JOD 0.790603
JPY 159.474235
KES 144.120258
KGS 94.014423
KHR 4534.740564
KMF 493.639946
KPW 1004.009832
KRW 1481.501095
KWD 0.340282
KYD 0.930914
KZT 535.01824
LAK 24669.365319
LBP 100045.447892
LKR 340.076392
LRD 223.413441
LSL 19.465355
LTL 3.29398
LVL 0.674795
LYD 5.321678
MAD 10.834381
MDL 19.4933
MGA 5033.664116
MKD 61.529329
MMK 3623.318692
MNT 3790.697235
MOP 8.967638
MRU 44.224033
MUR 51.171153
MVR 17.123835
MWK 1937.029835
MXN 21.384781
MYR 4.696637
MZN 71.290593
NAD 19.465355
NGN 1829.887108
NIO 41.110633
NOK 11.661944
NPR 149.516397
NZD 1.784261
OMR 0.429437
PAB 1.117252
PEN 4.194272
PGK 4.435565
PHP 62.04563
PKR 310.721888
PLN 4.265299
PYG 8721.189718
QAR 4.073019
RON 4.974358
RSD 117.06988
RUB 103.604552
RWF 1504.423172
SAR 4.186377
SBD 9.282371
SCR 15.069078
SDG 671.011434
SEK 11.317373
SGD 1.44148
SHP 0.84957
SLE 25.487701
SLL 23392.880292
SOS 638.4871
SRD 33.54789
STD 23089.988351
SVC 9.775246
SYP 2802.895941
SZL 19.4483
THB 36.936557
TJS 11.874383
TMT 3.915641
TND 3.383831
TOP 2.621362
TRY 37.957156
TTD 7.593117
TWD 35.657439
TZS 3039.296011
UAH 46.296501
UGX 4148.565935
USD 1.115567
UYU 45.89585
UZS 14232.941614
VEF 4041200.723372
VES 40.965693
VND 27420.64134
VUV 132.442377
WST 3.120758
XAF 656.064141
XAG 0.035763
XAU 0.000431
XCD 3.014876
XDR 0.828013
XOF 656.040614
XPF 119.331742
YER 279.282501
ZAR 19.435913
ZMK 10041.435126
ZMW 29.074575
ZWL 359.212178
  • AEX

    15.8000

    908.42

    +1.77%

  • BEL20

    28.3100

    4253.1

    +0.67%

  • PX1

    170.4900

    7615.41

    +2.29%

  • ISEQ

    211.4000

    9998.62

    +2.16%

  • OSEBX

    10.6400

    1411.02

    +0.76%

  • PSI20

    -34.4500

    6720.43

    -0.51%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    26.3700

    2586.49

    +1.03%

  • N150

    47.9200

    3375.76

    +1.44%

En Suède, une installation européenne de pointe pour sonder la matière
En Suède, une installation européenne de pointe pour sonder la matière / Photo: Emmanuel DUNAND - AFP

En Suède, une installation européenne de pointe pour sonder la matière

Il n'entrera en service qu'en 2028, mais le projet européen ESS (European Spalliation Source) en construction en Suède promet de sonder les matériaux avec une précision inégalée, grâce à la source de neutrons la plus puissante au monde.

Taille du texte:

Ses expériences permettront de caractériser les propriétés de nouveaux matériaux indispensables aux progrès dans les domaines de l’énergie, la santé, les transports, les technologies de l’information, etc...

Posée au milieu des champs près de Lund, dans le sud de la Suède, l'installation sortie de terre en 2014 est le fruit d’un consortium de treize pays européens avec la Suède et le Danemark comme hôtes.

Abrité dans un long tunnel déjà recouvert d'herbe, un faisceau de protons --la particule commune à tous les noyaux d'atomes-- y sera accéléré sur plus de 600 mètres pour atteindre une vitesse très proche de celle de la lumière.

Des techniciens s'affairent chaque jour pour monter l'accélérateur linéaire dans un enchevêtrement de câbles et tuyauteries.

Cette succession de machines maintient, avec de puissants aimants, et accélère, avec des champs électriques, le faisceau large comme un petit ongle.

Au bout du tunnel, il percutera alors une cible rotative de tungstène, déjà installée dans une enceinte blindée par un empilement de 1.700 tonnes de fonte.

Ce véritable bombardement va projeter des gerbes de neutrons (l'autre particule présente dans les noyaux d'atomes) qui seront guidées vers les différentes expériences, disposées en couronne autour de la cible.

Les premières expériences, abritées dans des "cages" de béton, sont en cours d'installation par des ingénieurs des plus de 50 laboratoires et instituts de recherche européens participant à l'ESS.

- Traquer les impuretés -

La recherche avec la neutronique (une branche de la physique nucléaire) doit aider aussi bien à lutter contre les maladies, en explorant les protéines de virus comme le VIH, qu'à sécuriser la transition énergétique, en développant de nouvelles batteries, explique le professeur Helmut Schober, directeur de l'ESS, lors d'une visite de presse.

Si l'installation permettra de faire de la recherche fondamentale, ses instruments de détection "ont été choisis pour aller dans la voie d'une physique très appliquée", dit-il.

Afin par exemple de développer des panneaux photovoltaïques plus efficaces, tester les métaux utilisés dans les turbines d’avions, ou encore les renforts latéraux pour pneus de voiture. Mais aussi explorer le monde quantique pour l'informatique de demain.

Composant de l’atome, le neutron a pour atout d’être une particule neutre électriquement et sensible au magnétisme, capable de sonder sans la détruire la matière qu’il traverse, en renseignant ainsi sur l’organisation de sa structure comme de son mouvement.

A une échelle de longueur aussi faible que le dixième de milliardième de mètre, et de temps aussi brève qu’un millionième de milliardième de seconde.

Atteindre ces performances suppose l’utilisation de matériaux extrêmement purs, usinés au micromètre près pour obtenir des instruments uniques assemblés dans des conditions de propreté extrême.

Comme dans la salle blanche du Commissariat à l’énergie atomique (CEA) à Saclay (Essonne), où l’on traque, avec l'aide d'un robot collaboratif, tout intrus d'une taille supérieure à 0,3 millionième de mètre.

- Microscope géant -

Car une fois soumise aux champs électriques intenses de l'accélérateur "la moindre poussière peut se transformer en +antenne+ polluant la cavité accélérant le faisceau", explique Catherine Madec, responsable pour le CEA de la fourniture de trente cryomodules qui contribueront à accélérer le faisceau de protons de l'ESS.

Ces machines nécessitent de grandes quantités de courant électrique et des champs magnétiques intenses, délivrés avec précision dans des éléments supraconducteurs exigeant un refroidissement à moins 271 degrés Celsius.

Via le CEA et le CNRS, la France est le premier contributeur au projet, à hauteur de 8,5% d’un budget initial de 1,87 milliard d’euros. Qui dépassera les 3,7 milliards à l’arrivée.

Avec un apport "en nature" de machines sur 70% de la longueur de l’accélérateur, et cinq des quinze premiers instruments qui serviront à étudier matière et matériaux.

Mais aussi une contribution essentielle au système de commande et contrôle de ce qui sera un "microscope géant avec un impact direct sur nos vies", selon Ciprian Plostinar, responsable à l'ESS de la partie accélérateur du projet.

Avec un "cycle de vie de 40 ans", explique le Pr. Schober, l'ESS, conçu pour être "modernisé en permanence", atteindra sa pleine puissance en 2035, en accueillant jusqu'à 22 expériences. L'enjeu sera qu'alors "les chercheurs et industriels du monde entier puissent venir jouer leur instrument dans cet orchestre", sourit-il.

U.Ammann--NZN